Research Goals

Goal 1: We explored Latinx students’ co-occurrence of identity development. Specifically, we examined profiles of Latinx students’ ethnic identity, STEM identity (i.e. math and science identity), and STEM commitment (math and science commitment).

Goal 2: We examined how students with distinct profiles of ethnic and STEM identities at Time 1 (T1) differed across math and science commitment at Time 2 (T2).

Method

Participants and Procedures

The sample included 288 families with middle school students (Mage = 13.69, SD = 0.50; 42% female; 86% U.S.-born) recruited from middle schools in Central Texas. Participants completed telephone interviews in English or Spanish.

Measures

Ethnic Identity:
- Ethnic identity was assessed using an adapted version of the MIIBI (Salinas et al., 1997). We used the private regard subscale (4 items; e.g., “I am proud to be a member of my ethnic group” α = .87).

STEM Identity:
- Science and Math Identity. Science and math identity were assessed using an adapted measure of college major academic identity for use among middle school students (Wallace & Syed, 2013). The modified questions focused on academic identity in science and math (the original items focused on college majors).
- We used the science identity subscale (9 items; e.g., “I think I am a good science student” α = .85) and math identity subscale (9 items; e.g., “I think I am a good math student” α = .86).
- **Commitment to Science & Math Career.** Commitment to a math and science career were each assessed using an adapted measure on college students’ intentions to work in a math or science career for use with middle school students (Hennessy et al., 2018). We used the science career subscale (7 items; e.g., “I intend to work in a science career” α = .94) and math career subscale (7 items; “I intend to work in a math career” α = .94).

Results

Analytic Plan. We conducted latent profile analysis (LPA) in Mplus, version 7.2. Selection of the best fitting model was guided by the Bayesian information criteria (BIC) and the adjusted BIC (ABIC); values closer to zero indicate a better fitting solution. We also used the Lo-Mendell-Rubin likelihood ratio test (LRT); significant LRT suggests that the model with k-number of profiles fits the data better than the model with k-1 number of profiles. Determination of the best fitting solution was also based on the pattern of means for each profile, conceptual relevance, and theory.

Results. See table 1 for descriptive statistics.

Goal 1:
- Based on fit indices and substantive meaning, a 4-profile solution was selected (Figure 1). Groups were termed STEM Contextual Identities (33%), Moderate-STEM Contextual Identities (40%), Low-STEM Contextual Identities (12%), and Conflicting-STEM Contextual Identities (15%).

Goal 2:
- ANOVA results revealed that the profiles differed on T2 Math (F = 22.15, p < .001) and T2 Science (F = 13.34, p < .001) commitment.
- For T2 Math and Science commitment, the results suggested the STEM Contextual (M_math = 3.67, M_science = 2.48) group was stronger in math and science commitment than the Moderate-STEM Contextual (M_math = 2.83, M_science = 2.89) and Low-STEM Contextual groups (M_math = 3.19, M_science = 2.96).
- T2 Math and Science commitment were not significantly different between the STEM Contextual and Conflicting-STEM groups (M_math = 1.70, M_science = 2.14) or between the Moderate-STEM and Conflicting-STEM groups.

Discussion

This is the first study to examine the co-occurrence of ethnic identity and STEM identity in Latinx middle school students.

Our findings suggest the importance of programming that incorporates culture in STEM subjects and fosters STEM identity before high school (Lana, 2006; Syed et al., 2011).

Goal 1
- First, our findings provide evidence of the contextual integration of multiple identities model, in that ethnic identity and academic identity co-occur. Given the salience of identity development in adolescence (Erickson, 1968), these findings suggest the importance of fostering both ethnic and STEM identities to support Latinx students’ future STEM interest.

Goal 2
- Second, the findings evidence that STEM commitment significantly differs across the STEM identity profiles. As anticipated from the literature, students in the STEM Contextual group (i.e. those with high co-occurring identity domains) had the highest T2 STEM commitment. This result suggests that for Latinx middle schoolers, STEM commitment is strengthened by the interplay of high ethnic identity and high STEM identity.

Limitations and Future Directions

This study used adolescent self-reported cross-sectional data, and a sample of youth from a specific southern region in the US. Thus, these findings may not be generalizable to other Latinx students. Future work should examine these links over time, include teacher and parent reports to triangulate findings, and test links with samples in other areas of the US.